THE EQUATIONS OF COMPATIBILITY OF DEFORMATIONS \dagger

N. M. BORODACHEV
Kiev
(Received 3 November 2000)

Nine equations of compatibility of deformations are obtained in which, unlike the classical Saint-Venant compatibility equations, only first derivatives with respect to the coordinates occur. It is proved that, of these nine equations, only six are independent. It is shown that the classical compatibility equations can be obtained from these equations. © 2002 Elsevier Science Ltd. All rights reserved.

The classical deformation compatibility equations have been discussed in some detail in monographs on the theory of elasticity $[1-4]$. These equations consist of six second-order partial differential equations in the six components of the strain tensor. In the linear theory of elasticity the deformation compatibility equations are regarded as the conditions for the six differential equations, which connect the components of the displacement vector and of the linear strain tensor with one another, to be integrable.

1. THE CLASSICAL DEFORMATION COMPATIBILITY EQUATIONS

We will use a rectangular system of coordinates x_{1}, x_{2}, x_{3}. The classical deformation continuity (compatibility) equations (Saint-Venant's equations) have the form

$$
\begin{gather*}
\frac{\partial^{2} \varepsilon_{x_{1}}}{\partial x_{2}^{2}}+\frac{\partial^{2} \varepsilon_{x_{2}}}{\partial x_{1}^{2}}=\frac{\partial^{2} \gamma_{x_{1} x_{2}}}{\partial x_{1} \partial x_{2}} \quad\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \tag{1.1}\\
\frac{\partial}{\partial x_{1}}\left(\frac{\partial \gamma_{x_{3} x_{1}}}{\partial x_{2}}+\frac{\partial \gamma_{x_{1} x_{2}}}{\partial x_{3}}-\frac{\partial \gamma_{x_{2} x_{3}}}{\partial x_{1}}\right)=2 \frac{\partial^{2} \varepsilon_{x_{1}}}{\partial x_{2} \partial x_{3}} \quad\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \tag{1.2}
\end{gather*}
$$

Here and henceforth the symbol (123) denotes that the unwritten equations (or expressions) are obtained by cyclic permutation of the subscripts, and $\varepsilon_{x 1}, \gamma_{x 12} / 2(123)$ are the components of the linear symmetrical strain tensor.

Using a three-dimensional Fourier integral transformation it was shown in [5] that of the six equations (1.1) and (1.2) only three are independent.

Equations (1.1) and (1.2) contain second derivatives of the components of the strain tensor with respect to the coordinates. Below we will obtain deformation compatibility equations which contain only first derivatives.

2. THE ASYMMETRICAL STRAIN TENSOR

It is well known that each angular deformation consists of two parts (two angles). Introducing the notation (u_{1}, u_{2}, u_{3} are the components of the displacement vector)

$$
\gamma_{x_{2}}^{u_{1}}=\frac{\partial u_{1}}{\partial x_{2}} \quad\left(\begin{array}{lll}
1 & 2 & 3 \tag{2.1}
\end{array}\right)
$$

we have

$$
\gamma_{x_{1} x_{2}}=\gamma_{x_{2}}^{\mu_{1}}+\gamma_{x_{1}}^{\mu_{2}} \quad\left(\begin{array}{lll}
1 & 2 & 3 \tag{2.2}
\end{array}\right)
$$

\dagger Prkl. Mat. Mekh. Vol. 65, No. 6, pp. 1056-1058, 2001.

The angles $\gamma_{x 2}^{u 1}, \gamma_{x 1}^{u 2}(123)$ are shown in Fig. 1.
The basis of this approach is the splitting of each angular deformation into two parts (angles).
From the three linear deformations $\varepsilon_{x 1}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and six angles $\gamma_{x 2}^{u 1}, \gamma_{x 3}^{u 1}\left(\begin{array}{ll}1 & 2\end{array}\right)$ we set up a new (asymmetrical) tensor

$$
\hat{D}=\left\|\begin{array}{lll}
\varepsilon_{x_{1}}^{u_{1}} & \gamma_{x_{2}}^{u_{1}} & \gamma_{x_{3}}^{u_{1}} \tag{2.3}\\
\gamma_{x_{1}}^{u_{2}} & \varepsilon_{x_{2}}^{u_{2}} & \gamma_{x_{3}}^{u_{2}} \\
\gamma_{x_{1}} & \gamma_{x_{2}}^{u_{3}} & \varepsilon_{x_{3}}^{u_{3}}
\end{array}\right\|
$$

Using notation (2.1) we have

$$
\varepsilon_{x_{1}}=\varepsilon_{x_{1}}^{u_{1}} \quad\left(\begin{array}{lll}
1 & 2 & 3 \tag{2.4}
\end{array}\right)
$$

Tensor (2.3) can be obtained from the displacement vector \mathbf{u} as follows:

$$
\begin{equation*}
\hat{D}=(\nabla \mathbf{u})^{*}=\frac{d \mathbf{u}}{d \mathbf{r}} \tag{2.5}
\end{equation*}
$$

$\left((\nabla \mathbf{u})^{*}\right.$ is the derivative of the vector \mathbf{u} with respect to the radius vector \mathbf{r} [2]).
We further have

$$
\hat{D}+\hat{D}^{*}=(\nabla \mathbf{u})^{*}+\nabla \mathbf{u}=2 \operatorname{def} \mathbf{u}=2 \hat{\varepsilon}
$$

where $\hat{\varepsilon}$ is the classical linear strain tensor, i.e. the tensor $\hat{\varepsilon}$ is the symmetrical part of the tensor \hat{D}.
Consequently,

$$
\hat{D}=\hat{\varepsilon}+\hat{\Omega}, \quad \hat{\Omega}=\left(\hat{D}-\hat{D}^{*}\right) / 2
$$

3. DERIVATION OF THE NEW DEFORMATION COMPATIBILITY EQUATIONS

We set up the tensor

$$
\begin{equation*}
\hat{B}=\operatorname{rot} \hat{D}^{*}=\operatorname{rot}(\nabla \mathbf{u})=0 \tag{3.1}
\end{equation*}
$$

Hence follow nine new deformation compatibility equations

$$
\frac{\partial \gamma_{x_{3}}^{u_{1}}}{\partial x_{2}}-\frac{\partial \gamma_{x_{2}}^{u_{1}}}{\partial x_{3}}=0 \quad\left(\begin{array}{lll}
1 & 2 & 3 \tag{3.2}
\end{array}\right)
$$

Fig. 1

$$
\frac{\partial \varepsilon_{x_{1}}^{u_{1}}}{\partial x_{3}}-\frac{\partial \gamma_{x_{3}}^{u_{1}}}{\partial x_{1}}=0, \quad \frac{\partial \gamma_{x_{2}}^{u_{1}}}{\partial x_{1}}-\frac{\partial \varepsilon_{x_{1}}^{u_{1}}}{\partial x_{2}}=0 \quad\left(\begin{array}{llll}
1 & 2 & 3 \tag{3.3}
\end{array}\right)
$$

Only first derivatives with respect to the coordinates occur in deformation compatibility equations (3.2) and (3.3), whereas second derivatives occur in the classical saint-Venant equations (1.1) and (1.2).

The tensor \hat{B} can be called the deformation compatibility (continuity) tensor.
The classical equations (1.1) and (1.2) can be obtained from the new deformation compatibility equations (3.2) and (3.3).

From Eqs (3.3) we have

$$
\begin{equation*}
\frac{\partial \varepsilon_{x_{1}}^{u_{1}}}{\partial x_{3}}=\frac{\partial \gamma_{x_{3}}^{u_{1}}}{\partial x_{1}}, \quad \frac{\partial \varepsilon_{x_{3}}^{u_{3}}}{\partial x_{1}}=\frac{\partial \gamma_{x_{1}}^{u_{3}}}{\partial x_{3}} \tag{3.4}
\end{equation*}
$$

We differentiate the first equation of $(3,4)$ with respect to x_{3} and the second with respect to x_{1} and add them term by term. Using relations (2.2) we obtain

$$
\frac{\partial^{2} \varepsilon_{x_{1}}^{u_{1}}}{\partial x_{3}^{2}}+\frac{\partial^{2} \varepsilon_{x_{3}}^{u_{3}}}{\partial x_{1}^{2}}=\frac{\partial^{2}}{\partial x_{1} \partial x_{3}}\left(\gamma_{x_{3}}^{u_{1}}+\gamma_{x_{1}}^{u_{3}}\right)=\frac{\partial^{2} \gamma_{x_{3} x_{1}}}{\partial x_{1} \partial x_{3}}
$$

i.e. one of Eqs (1.1). The remaining two equations of (1.1) can be obtained similarly.

We will now obtain Eqs (1.2). We have

$$
\begin{gather*}
\frac{\partial \gamma_{x_{1}}^{u_{3}}}{\partial x_{2}}+\frac{\partial \gamma_{x_{2}}^{u_{3}}}{\partial x_{1}}=2 \frac{\partial^{2} u_{3}}{\partial x_{1} \partial x_{2}} \tag{3.5}\\
\frac{\partial \gamma_{x_{3}}^{u_{2}}}{\partial x_{1}}+\frac{\partial \gamma_{x_{3}}^{u_{1}}}{\partial x_{2}}=\frac{\partial}{\partial x_{3}}\left(\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{2}}\right)=\frac{\partial \gamma_{x_{1} x_{2}}}{\partial x_{3}} \tag{3.6}
\end{gather*}
$$

We will write equality (3.6) in the form

$$
\frac{\partial}{\partial x_{1}}\left(\gamma_{x_{3}}^{u_{2}}+\gamma_{x_{2}}^{u_{3}}\right)+\frac{\partial}{\partial x_{2}}\left(\gamma_{x_{1}}^{u_{3}}+\gamma_{x_{3}}^{u_{1}}\right)=\frac{\partial \gamma_{x_{1} x_{2}}}{\partial x_{3}}+\frac{\partial \gamma_{x_{1}}^{u_{3}}}{\partial x_{2}}+\frac{\partial \gamma_{x_{2}}^{u_{3}}}{\partial x_{1}}
$$

Hence, using (2.2) and (3.5) we have

$$
\frac{\partial \gamma_{x_{2} x_{3}}}{\partial x_{1}}+\frac{\partial \gamma_{x_{3} x_{1}}}{\partial x_{2}}-\frac{\partial \gamma_{x_{1} x_{2}}}{\partial x_{3}}=2 \frac{\partial^{2} u_{3}}{\partial x_{1} \partial x_{2}}
$$

Differentiating this equation with respect to x_{3} we arrive at one of the equations (1.2). The remaining two equations of (1.2) can be obtained similarly.

4. THE NUMBER OF INDEPENDENT DEFORMATION COMPATIBILITY EQUATIONS

We will show that of the nine deformation compatibility equations (3.2) and (3.3) only six are independent.

Applying to Eqs (3.2) and (3.3) a three-dimensional Fourier integral transformation of the form

$$
\bar{f}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\frac{1}{(2 \pi)^{3 / 2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}, x_{3}\right) e^{\prime\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}\right)} d x_{1} d x_{2} d x_{3}
$$

and taking into account the conditions for the deformations to decay at infinity, we obtain the algebraic equations

$$
\alpha_{2} \bar{\gamma}_{x_{3}}^{u_{1}}-\alpha_{3} \bar{\gamma}_{x_{2}}^{u_{1}}=0 \quad\left(\begin{array}{lll}
1 & 2 & 3 \tag{4.1}
\end{array}\right)
$$

$$
\alpha_{3} \bar{\varepsilon}_{x_{1}}^{u_{1}}-\alpha_{1} \bar{\gamma}_{x_{3}}^{u_{1}}=0, \quad \alpha_{1} \bar{\gamma}_{x_{2}}^{u_{1}}-\alpha_{2} \bar{\varepsilon}_{x_{1}}^{u_{1}}=0 \quad\left(\begin{array}{lll}
1 & 2 & 3 \tag{4.2}
\end{array}\right)
$$

(in order to simplify the proof we consider an unbounded elastic medium).
From Eqs (4.2) we have

$$
\bar{\gamma}_{x_{3}}^{u_{1}}=\frac{\alpha_{3}}{\alpha_{1}} \bar{x}_{x_{1}}^{u_{1}}, \quad \bar{\gamma}_{x_{2}}^{u_{1}}=\frac{\alpha_{2}}{\alpha_{1}} \bar{\varepsilon}_{x_{1}}^{u_{1}}
$$

Substituting these expressions into the first equation of (4.1), we obtain an identity. A similar result is obtained for the remaining two equations of (4.1).
Hence, of the nine deformation compatibility equations (3.2) and (3.3) only six, namely Eqs (3.3), are independent.

REFERENCES

1. NOWACKI, W., Teoria Sprezystosci. PWN, Warsaw, 1973.
2. LUR'YE, A. I., Theory of Elasticity. Nauka, Moscow 1970.
3. HAHN, H. G., Elastizitatstheorie: Grundlagen der Linearen Theorie und Anwendungen auf eindimensionale, ebene und raumliche Probleme. Teubner, Stuttgart, 1985.
4. WASHIZU, K., Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford, 1974.
5. BORODACHEV, N. M., An approach to the solution of the three-dimensional problem of the theory of elasticity in stresses. Prikl. Mekh., 1995, 31, 127, 38-44.
6. DAVIES, B., Integral Transforms and Their Applications. Springer, New York, 1978.
