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Nine equations of compatibility of deformations are obtained in which, unlike the classical Saint-Venant compatibility equations, 
only first derivatives with respect to the coordinates occur. It is proved that, of these nine equations, only six are independent. 
It is shown that the classical compatibility equations can be obtained from these equations. 0 2002 Elsevier Science Ltd. All 
rights reserved. 

The classical deformation compatibility equations have been discussed in some detail in monographs 
on the theory of elasticity [14]. Th ese equations consist of six second-order partial differential equations 
in the six components of the strain tensor. In the linear theory of elasticity the deformation compatibility 
equations are regarded as the conditions for the six differential equations, which connect the components 
of the displacement vector and of the linear strain tensor with one another, to be integrable. 

1. THE CLASSICAL DEFORMATION COMPATIBILITY EQUATIONS 

We will use a rectangular system of coordinates x1, x2, x3. The classical deformation continuity 
(compatibility) equations (Saint-Venant’s equations) have the form 

a*& a2Ex2 a2Yxlx2 XI+-=_ 
ax; a.$ axlax 

(1 2 3) 

a 

( 

a~=,=, aYllXz aXzX, = 2 a2aX, _ -+--- ax, ax2 ax3 ax, 1 axax 2 3 (1 2 3) 

(1.1) 

(1.2) 

Here and henceforth the symbol (1 2 3) denotes that the unwritten equations (or expressions) are 
obtained by cyclic permutation of the subscripts, and %1, yXu2/ 2 (12 3) are the components of the linear 
symmetrical strain tensor. 

Using a three-dimensional Fourier integral transformation it was shown in [5] that of the six equations 
(1.1) and (1.2) only three are independent. 

Equations (1.1) and (1.2) contain second derivatives of the components of the strain tensor with respect 
to the coordinates. Below we will obtain deformation compatibility equations which contain only first 
derivatives. 

2. THE ASYMMETRICAL STRAIN TENSOR 

It is well known that each angular deformation consists of two parts (two angles). Introducing the 
notation (ui, u2, u3 are the components of the displacement vector) 

y:; =$ (1 2 3) 
2 

(2.1) 

we have 

Y r,x* = y:; +r:; (1 2 3) (2.2) 
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The angles '~/x2,Ul "~xlU2 (1 2 3) are shown in Fig. 1. 
The basis of this approach is the splitting of each angular deformation into two parts (angles). 
From the three linear deformations exl (1 2 3) and six angles %2,ua %3"I (1 2 3) we set up a new 

(asymmetrical) tensor 

I u2 u 2 b =  "t~ % "/~3 

Yx2 ~xs 

(2.3) 

Using notation (2.1) we have 

Ex,=e~', (1 2 3) 

Tensor (2.3) can be obtained from the displacement vector u as follows: 

b= (Vu)* du 
dr 

((Vu)* is the derivative of the vector u with respect to the radius vector r [2]), 
We further have 

(2.4) 

(2.5) 

/)+ D* = (Vu)* + Vu = 2defu = 2~ 

where ~ is the classical linear strain tensor, i.e. the tensor ~ is the symmetrical part of the tensor D. 
Consequently, 

D=  ~:+h, h = ( b - b * ) / 2  

. 

We set up the tensor 

D E R I V A T I O N  O F  T H E  N E W  D E F O R M A T I O N  
C O M P A T I B I L I T Y  E Q U A T I O N S  

/1 = rot/9" = rot(Vu) = 0 

Hence follow nine new deformation compatibility equations 

~!~ ~'~ =o ~l 2 3) 
Ox2 0x3 

(3.1) 

(3.2) 

X2 

dx 2 

(123) 
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Fig. 1 
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8E;,, a r ? , = o ,  ay;, a<, 
ax 3 Ox: Ox, Ox---~ =0  (I 2 3) (3.3) 

Only first derivatives with respect to the coordinates occur in deformation compatibility equations (3.2) 
and (3.3), whereas second derivatives occur in the classical saint-Venant equations (1.1) and (1.2). 

The tensor B can be called the deformation compatibility (continuity) tensor. 
The classical equations (1.1) and (1.2) can be obtained from the new deformation compatibility 

equations (3.2) and (3.3). 
From Eqs (3.3) we have 

8<, _ at;,, o<, _ a~;~ 
OX 3 OX I , OX I OX 3 (3.4) 

We differentiate the first equation of (3, 4) with respect tox3 and the second with respect toxl and add 
them term by term. Using relations (2.2) we obtain 

a2e;i I i~ 2-u3 02 O2~x3xl 

8x3 2 Ox~ axOx3 axOx3 

i.e. one of Eqs (1.1). The remaining two equations of (1.1) can be obtained similarly. 
We will now obtain Eqs (1.2). We have 

a~,u3 ~3= aZu3 
x, ~ - - -  = 2 (3.5) 

Ox2 8xl Oxlax2 

•tx3 + ~x3 

ax, ax2 : ax, t-gTx, Tx~ ) = ax, (3.6) 

We will write equality (3.6) in the form 

a ., ., a .., arx,., + at;; at;', 
8x,(Y'.+Y'.>+~ ~',+~;',)= ax. a-g7 + ax--7 

Hence, using (2.2) and (3.5) we have 

C~Yx2x3 + -  

Oxl 
0Tx3x) OYx'r2 - 2 02u3 

OX2 OX3 8XlOX2 

Differentiating this equation with respect to x 3 we arrive at one of the equations (1.2). The remaining 
two equations of (1.2) can be obtained similarly. 

4. THE N U M B E R  OF I N D E P E N D E N T  D E F O R M A T I O N  
C O M P A T I B I L I T Y  E Q U A T I O N S  

We will show that of the nine deformation compatibility equations (3.2) and (3.3) only six are 
independent. 

Applying to Eqs (3.2) and (3.3) a three-dimensional Fourier integral transformation of the form 

.f(~,.ot,.a,)=~l~i : : :f(x, x2.x3)e'(~'x'+a2x2+c(3X3)dx, dx2dx3 
(2/t)/2 . . . . . .  ' 

and taking into account the conditions for the deformations to decay at infinity, we obtain the algebraic 
equations 

a2,x3~'"s _ a31x~r'"' = 0 (I 2 3) (4.1) 
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oc3E~ I - ¢ t , ~  3 =0, a , ~ l  2 -cx2E~ =0  (I 2 3) (4.2) 

(in order to simplify the proof we consider an unbounded elastic medium). 
From Eqs (4.2) we have 

- , , ,  =a3~.,  ~'x2-U' =a2 ~., 
"Yx 3 51 x! O~ I x I 

Substituting these expressions into the first equation of (4.1), we obtain an identity. A similar result is 
obtained for the remaining two equations of (4.1). 

Hence, of the nine deformation compatibility equations (3.2) and (3.3) only six, namely Eqs (3.3), 
are independent. 
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